Time Series Representation Combining PIPs Detection and Persist Discretization Techniques for Time Series Classification

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel sparse representation for time series classification

Article history: Received 12 February 2014 Received in revised form 13 August 2014 Accepted 29 August 2014 Available online 8 September 2014

متن کامل

Sparse Representation for Time-Series Classification

This chapter studies the problem of time-series classification and presents an overview of recent developments in the area of feature extraction and information fusion. In particular, a recently proposed feature extraction algorithm, namely symbolic dynamic filtering (SDF), is reviewed. The SDF algorithm generates low-dimensional feature vectors using probabilistic finite state automata that ar...

متن کامل

Algorithms for Segmenting Time Series

As with most computer science problems, representation of the data is the key to ecient and eective solutions. Piecewise linear representation has been used for the representation of the data. This representation has been used by various researchers to support clustering, classication, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain...

متن کامل

Which Methodology is Better for Combining Linear and Nonlinear Models for Time Series Forecasting?

Both theoretical and empirical findings have suggested that combining different models can be an effective way to improve the predictive performance of each individual model. It is especially occurred when the models in the ensemble are quite different. Hybrid techniques that decompose a time series into its linear and nonlinear components are one of the most important kinds of the hybrid model...

متن کامل

Discretization of Time Series Data

An increasing number of algorithms for biochemical network inference from experimental data require discrete data as input. For example, dynamic Bayesian network methods and methods that use the framework of finite dynamical systems, such as Boolean networks, all take discrete input. Experimental data, however, are typically continuous and represented by computer floating point numbers. The tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of the Korea Contents Association

سال: 2010

ISSN: 1598-4877

DOI: 10.5392/jkca.2010.10.9.097